If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-32+2x=0
a = 12; b = 2; c = -32;
Δ = b2-4ac
Δ = 22-4·12·(-32)
Δ = 1540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1540}=\sqrt{4*385}=\sqrt{4}*\sqrt{385}=2\sqrt{385}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{385}}{2*12}=\frac{-2-2\sqrt{385}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{385}}{2*12}=\frac{-2+2\sqrt{385}}{24} $
| (2x+11)+90+0=180 | | 5q+5(–9q+10)=–6(7q−8) | | 3c+5/6=-2 | | -3x^2+11=38 | | 75+(3x+5)+58=180 | | 3x+112=-55 | | (3x+2)3=24 | | -2y+4(y+2)=18 | | 3x+112=-56 | | 50+45x=70+35x | | 3x15=45 | | 26x+13=273 | | |4x-3|=12 | | 6w+24=6w-15 | | 15=2t+3 | | 90+(2x-5)+57=180 | | |6m+4|+8=10 | | 81y^2−16=0 | | 8x-2+42+x=168 | | 4b-20=60 | | x^2-9x+0.18=0 | | 38x-19=399 | | 90+(2x+12)+42=180 | | 19x-36+6x+31=180 | | f/9-20=-28 | | –30j=240 | | A=-6v+13v+5-4v+9-5v= | | 3k+3-1=5 | | 3p^2+6p+24=0 | | 8x-2+42=168 | | 19x-36=6x=31 | | -0.2=a+(-0.8) |